INTRODUCTION TO INDUSTRIAL CYBERSECURITY

2ND SUMMER SCHOOL

Miguel A. Prada, Universidad de León (Spain)

CONTENTS

- 1. Concepts
- 2. Relevance of industrial cybersecurity
- 3. Distinctive features of industrial control systems
- 4. Assets, threats, vulnerabilities and impact
- 5. Known incidents
- 6. Security measures

Concepts

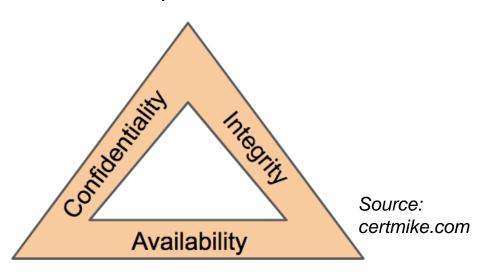
CONCEPTS

- Industrial Process: A process meant to obtain, transform or transport primary products
- Automation: Use of equipment and techniques to make an industrial process work with low human intervention

Control system: It allows regulating another system to achieve the

desired behavior

Source: southernfield.com



CONCEPTS

- Modern control systems are cyber-physical systems combining control systems, computing and communications
- Cybersecurity: Protection of computer systems and networks against intentional attacks
- The way to deal with the cybersecurity problem is risk mitigation
- Risk = Likelihood of an undesired event X Impact

Relevance of industrial cybersecurity

UBIQUITY


- Security of control systems is relevant because they are present in many areas:
 - Industry
 - Building automation
 - Cars
 - Aircraft
 - "Smart" devices
 - Critical infrastructures
 - •

CRITICAL INFRASTRUCTURES

- Control systems are essential components of critical infrastructures
- A critical infrastructure is a facility or system that supports services that are essential for the security and economy of a country

© US Cybersecurity & Infrastructure Security Agency (CISA)

Laws and regulations are applicable

A WRONG STARTING POINT

- Safety or protection against accidental events has always been considered in control systems
 - Prevention of damages in equipment, facilities and people due to natural disasters, failures or errors
 - Clear regulations and procedures
- About Security or protection against intentional damages
 - There have always been clear procedures for physical security against theft or sabotage
 - However, cybersecurity was not traditionally considered prioritary, neither by manufacturers nor by operators
 - Until recently, neither regulations nor standards

REASONS

A false sense of security

- Untrained staff
- It was assumed that the control system worked in complete isolation, without connection to other information systems (air gap)
- Security by obscurity, since specific technology was used

However

- Convergence: currently, off the shelf software is massively used
- For management and operation needs, control systems are connected to the corporate network or the Internet
- There is enough publicly accessible information about the technologies

AIR GAP

CURRENT SITUATION

- IT (information technologies) vs OT (operational technologies)
- Cybersecurity in industrial control systems less developed than IT cybersecurity
- The distinctive features of control systems make it difficult to apply the same solutions directly
- As a result, there is still:
 - A lower level of maturity
 - A need for more systematic procedures
 - A need for adapted technologies
 - A need for training

Distinctive features of industrial control systems

DISTINCTIVE FEATURES OF CONTROL SYSTEMS

- Great lifespan of facilities
- Continuous operation
- Availability is more important than integrity and confidentiality, unlike in other systems
 - CIA → AIC

- Difficult maintenance and patching
- Outdated technologies with limited protection or no security measures
- Some usual practices can't be applied because they hamper the normal operation of the system: antivirus, active scans, ...

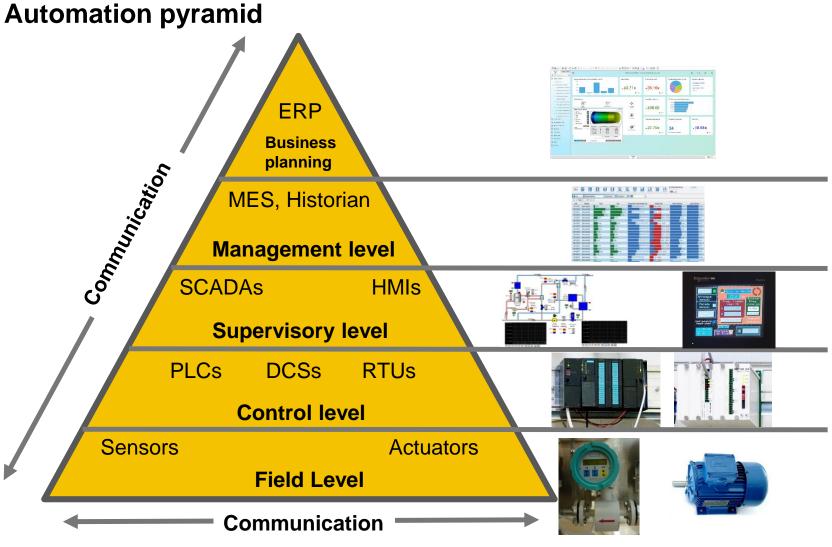
DISTINCTIVE FEATURES OF CONTROL SYSTEMS

- Often, low latencies and determinism or real time
- Specific software and hardware
- Specific, and potentially vast, network architectures

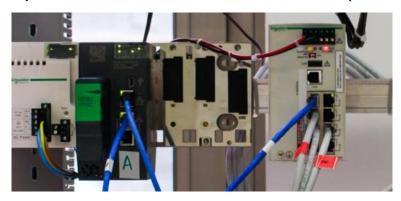
- Specific (and insecure) communication protocols
- Generally limited computational resources
- Difficulties to introduce changes, disable services or add additional software to the provided setup
- Log management and forensic analysis is difficult
- Certification or standardization might be compulsory

DISTINCTIVE FEATURES OF CONTROL SYSTEMS

- A part of the staff is not IT:
 - Different priorities, language and training
- Greater dependence on manufacturers/integrators of the control system
- More concrete impacts of cybersecurity incidents



Distinctive features: Architecture & technologies


Field level:

- Instrumentation, i.e., devices that interface with the physical world
- Sensors measure values
- Actuators act in the physical system

- Control level
 - We have control devices:
 - The most general and common case is the Programmable Logic controller (PLC)
 - Other technologies, such as Distributed control systems (DCSs), Industrial computers, Remote terminal units (RTU), ...

- And the engineering workstations:
 - Computers used to program/manage the control devices

CONTROL DEVICES: SECURITY FEATURES

- Generally limited
 - Password-protected program
 - Physical protection of program overwriting
 - Disabling, by default, the vulnerable services
 - Web and/or FTP services are often provided for monitoring, configuration or maintenance (and disregarded)
- In the best case scenario (cutting-edge devices)
 - Access control lists
 - Firewalls and ability to create VPN tunnels

Supervisory level:

- Systems in charge of monitoring the production units and intervening on them
- Decision taking, manual setpoints, data acquisition and processing, alarm management, etc.
- HMI (Human Machine Interfaces)
- SCADA (Supervisory Control And Data Acquisition) systems

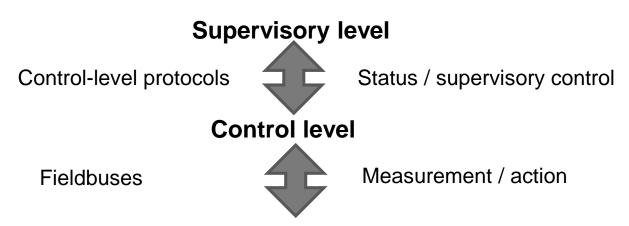
HMI AND SECURITY

- Monitoring and control touch panels, to enable a quick visualization of the system variables, alarms and setpoints
- Losing its operation means losing visibility of the process
- Usually found in areas with strong physical security
- HMI operators usually don't authenticate
 - During an emergency, it might block access
- Some specific functions have access control

SCADA AND SECURITY

- Software for real-time monitoring of industrial processes with a user interface. Remote control of systems is also available
- It is also known as Building/Energy/... management system
- Redundancy at different levels might be needed
- The SCADA server must be hardened
- External access might be needed
 - From the Internet or the business intranet
 - This connections must be protected to avoid they are used as an input vector to a cyberattack

Source: EFY Bureau


Distinctive features: Industrial communications

COMMUNICATION WITH THE CONTROL DEVICE

Communication during the control system operation

- Several technologies competing for the market, but they are open standards
- Communication during device programming, configuration and maintenance
 - Between the engineering workstation and the control device
 - Proprietary protocols or proprietary extensions of standard protocols
 - Before, serial protocols. Now, with Ethernet and TCP/IP

FIELDBUSES

- Designed to provide efficiency
- Serial communication, short messages, low computational resources
- Fundamental differences with other IT networks
- Often master-slave
- Only implement layers 1, 2 and 7

Application

Data link

Physical

CONTROL-LEVEL PROTOCOLS

- Not only protocols to communicate between control and field levels, also higher in the pyramid
 - Among control devices, or between control and supervision
 - Different requirements

Application

TCP/UDP

IP

Ethernet

- Generally over TCP/IP and, therefore, routable
 - Of special interest then to cybersecurity
 - Non-periodical and larger messages, usually
 - Protocol families with alternatives for fieldbus and control-level
 - Applying Ethernet also in lower levels for increased interoperability is becoming a trend
- All of them <u>lack any security measure</u>
 - They don't implement encryption, authentication or integrity checks

INDUSTRIAL PROTOCOL EXAMPLE: MODBUS TCP

- Modbus RTU frames encapsulated over TCP/IP
- TCP used in the transport layer
- The server (slave) listens to port 502
- Point to point communication (unicast)
- Simple and widely supported
- Function codes and parameters/responses

INDUSTRIAL PROTOCOLS – SECURITY FEATURES

- No authentication and checksums at the application level:
 - Not possible to verify that the message comes from a trusted device
 - Integrity can't be checked
 - Possible simple man-in-the-middle (MitM) or replay attacks

No encryption:

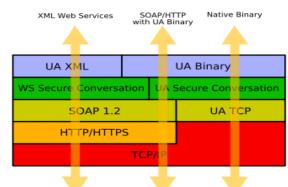
 Information about addresses, function codes and values can be extracted directly from a traffic capture

CONFIGURATION PROTOCOLS

- For programming and parameterization of control devices, manufacturer software generally uses
 - Proprietary protocols or proprietary extensions of open protocols
- Extremely critical actions
 - Replacing the control program or modifying the execution status: start/stop
- The deficiencies of open protocols are inherited
- Furthermore, ignorance about the structure and content of the messages is an additional problem
 - Only recently there are firewalls with support to filter these protocols

OPC STANDARD

- In complex systems, communication between SCADA and devices would required many different APIs
- Standardization need


- OPC: Communication standard
 - Client-server architecture
 - The OPC client uses a standard interface
 - The OPC server translates from the OPC standard to the specific PLC drivers
 - Manufacturers provide OPC servers for their PLCs
 - Classic OPC, initially based on obsolete Microsoft technology ->
 OPC UA, new platform-independent specification

OPC UA

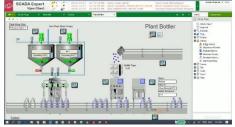
- General features
 - Binary or XML format (SOAP web services)
 - Device and process model: types, semantic information, links
- Security features:
 - Encryption with public key infrastructure
 - Token-based or certificate-based authentication
 - WS Secure Conversation, TLS.

- The "modern standard" → quick acceptance in the industrial area
- It can be used in more scopes than classic OPC

TREND: INDUSTRIAL DIGITALIZATION

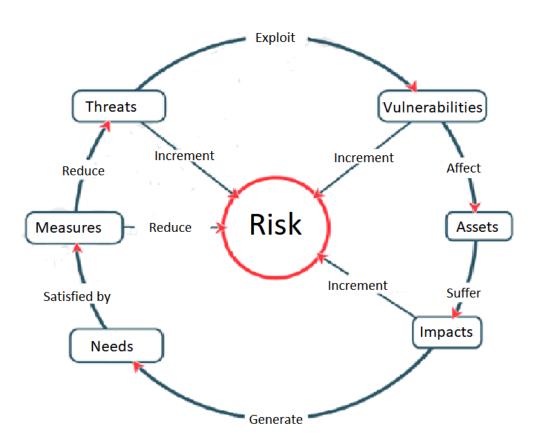
- Industry 4.0, Connected Industry, Industrial Internet of things, ...
 → IT/OT Convergence
 - Approach centered on cyber-physical systems: closer integration with IT services
 - Greater connectivity
 - Application of new enabling technologies such as digital twins, augmented reality, cloud services, ...
 - Data analysis to improve the process and product
 - Closer integration with providers and customers
- Since functions, exposed as services, must be available for different resources
 - Generic technologies such as HTTPS, OPC UA, MQTT or CoAP are increasingly used
 - Especially when communicating with edge and cloud

Assets, threats, vulnerabilities and impact



ASSETS

- Targets that might suffer a threat
 - Engineering workstations, PLCs, RTUs, etc.
 - Project files
 - Program Logic
 - Firmware
 - HMIs, SCADAs and historians
 - Network devices and security elements (filtering elements, authentication and authorization, ...)



THREATS

Source: Incibe

- Every threat has:
 - An agent (who)
 - A vector (how it starts)
 - A target
- And requires:
 - Skills
 - Intention
 - Opportunity
- Types of threats: Internal or external Targeted or untargeted

VECTORS AND INITIAL TARGETS

- Typical vectors of directed attacks:
 - Social engineering
 - Spear Phishing
 - Removable devices
 - Watering Hole
 - SQL injection / XSS in web
 - External staff / VPN access stolen
- The initial aims are:
 - SCADA servers and historians
 - Remote accesses, network devices, etc.

SPECIFIC THREATS

- Control elements can be subject to the following threats:
 - Firmware alteration
 - Execution mode alteration (e.g., stop)
 - Interception or alteration of the control program to observe or modify (temporally o permanently) its activity
 - Interception or alteration of communications
- And supervisory elements to threats in:
 - The integrity of communications with other elements
 - The integrity/authenticity of process data

SPECIFIC THREATS

- Advanced persistent threat (APT)
 - Directed attack by very capable specialists
 - It might be oriented to interrupt the system operation
 - Sophisticated attack with multiple stages
 - Initial gathering of relevant information
 - Sophisticated vectors
 - Remains hidden but operating for a long time
 - Uses diverse malware

VULNERABILITIES

- The system might be vulnerable at the level of:
 - Host
 - Configuration
 - Software
 - Hardware
 - Network
 - Policies and procedures
- Every level of the pyramid might face different vulnerabilities

HOST VULNERABILITIES

- No physical protection of devices and interfaces
 - Disassembly of de device, analysis of technical documentation, bus snooping, memory dumping
- Unrestricted removable devices
 - Malware infection through USB
- No integrity protection for firmware
- Insecure coding in firmware, OS or application
 - No input validations
 - Buffer, heap or array overflows
 - SQL injection, XSS y CSRF in web services
- Outdated devices
- Default configurations and unnecessary services

NETWORK VULNERABILITIES

- Unclear and undocumented logic architecture
 - Although the physical one is usually clear
- Inadequate or inexistent segmentation
- Incorrect configuration of filtering devices
- Insecure protocols
 - All industrial protocols but OPC UA
 - Less problematic in other automation areas
 - Susceptible to DoS, information interception and man-in-themiddle
 - In proprietary configuration protocols, we add:
 - Ignorance of structure and content of the messages → it is difficult to detect a misuse

VULNERABILITIES OF POLICIES AND PROCEDURES

- With regard to staff and third parties
 - Deficiencies in policies for account and password management
 - Lack of staff awareness and training: might fall prey too social engineering
 - Inadequate use of mobile devices
- With regard to assets
 - Deficiencies in configuration control and change management
 - Lack of formal documentation
 - No auditing or responsibilities
- With regard to incidents
 - Lack of appropriate plans for incident and recovery management

IMPACT

- Loss of view
- Loss of communication
- Loss of control
- Which, in turn, might cause more concrete impacts:
 - Damage to people, equipment, environment
 - Impact to national security
 - Loss of production, quality, confidential information
 - Reputational damage
 - Violation of legal requirements, etc.

RISK ASSESSMENT

- Prioritize risks reduction measures
 - A difficult art
 - We need to estimate the impact and the probability
 - Knowledge about the industrial control systems, their function and weaknesses
 - Knowledge about the global trends
 - Think from the perspective of an attacker
 - Different models or frameworks

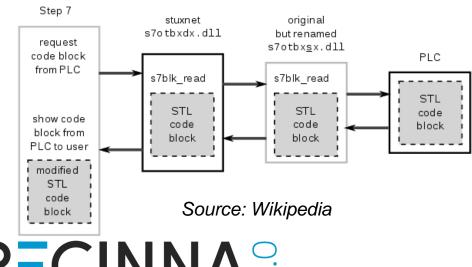
Known incidents

AURORA PROJECT

- Experiment in Idaho National Laboratory, 2007
- Viability assessment of cyberattacks on control systems
- Classified information until 2014
- A diesel generator
- Operation with protection relays
- Desynchronization of the generator con the power network
- They made it explode

Aurora Project Review

- A vulnerability was discovered and an Interagency Tiger Team was formed
- Initial concerns and modeling results were confirmed by a physical test March 4 2007
- Test resulted in a total loss of generating capability with extensive damage in about 3 minutes
- A strong example of interagency cooperation and public-private partnership


UNCLASSIFIED/FOR OFFICIAL USE ONLY

- 2010. First malware oriented to attack control systems
- **Target**
 - PLCs with a certain configuration (Siemens S7)
 - That controlled the frequency of AC motors such as the ones used in uranium centrifuges
 - Modify the operation of the PLCs in an imperceptible way

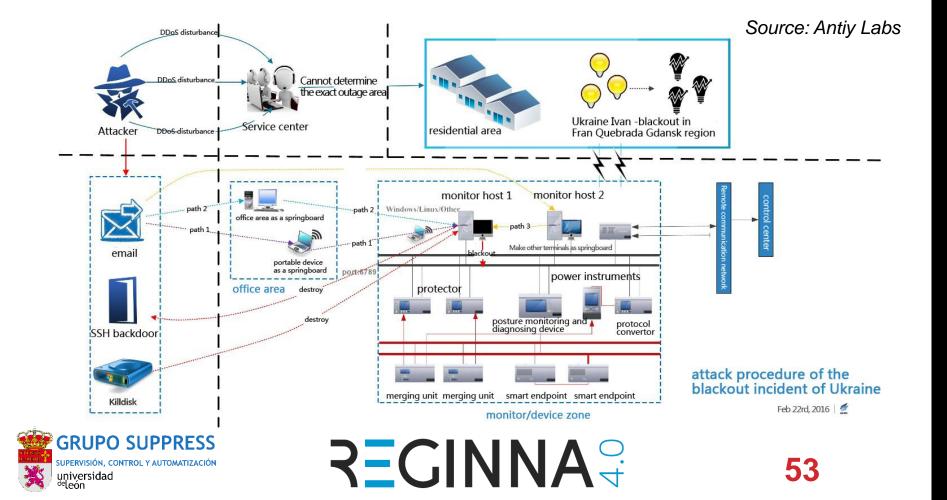
- Worm and rootkit properties:
 - Main means of infection were USB drives
 - Exploited 4 zero-day vulnerabilities
 - Able to infect from Windows 2000 to 7/Server 2008R2
- Using valid digital certificates
- Complex communication with C&C
 - P2P network
- Behavior depends on the host
 - If it is not its target→ rootkit that loads malware in startup and deploys different propagation tactics
 - If it is the target → payload

Payload:

- It copies in the SCADA database to modify monitoring screens
- Replaces communication DLL with the PLC and copies itself to the project files
- Looks for systems controlling AC motors with a very high frequency
- When it finds that configuration, it changes back and forth the frequency to render them useless
- It interferes in the process while deceiving the system operators

- Lessons learnt
 - Advanced persistent threat
 - Estimated effort over 6 person-years and probably investment in a replica → Extremely high resources, ability and motivation
 - Cyberattack as a weapon
 - 60% of devices in Iran
 - Vulnerabilities exploited
 - Of the device, both in the OS and the specific software
 - Of the procedures: insufficient control of removable devices
 - Of the network: communications with auxiliary services
 - Protection measures (difficult against such a sophisticated attack)
 - Reinforce network and perimeter security, use whitelisting and monitor security events

UKRAINIAN ELECTRICITY NETWORK


- 2015, affected 225,000 people for 6 hours
- Spear phishing with Excel files to obtain credentials and gather information
- Used BlackEnergy (3) malware
- But service interruption was caused by the direct interaction of the attackers
- Connection through compromised VPNs and remote desktops to send commands from SCADAs
- Coordinated attacks to gateways and routers firmware, disk wiping with KillDisk, manipulation of UPSs
- DoS to the phone customer service

UKRAINIAN ELECTRICITY NETWORK

- Advanced persistent threat
- Joint and coordinated exploitation of several vulnerabilities

CRASHOVERRIDE/INDUSTROYER

- Incident in an Ukrainian substation in 2016
- Spear Phishing. In this case, a malware was used to open the relays
- The malware shows the level of evolution in the attacks:
 - Platform to attack electricity distribution systems, but not restricted to a single manufacturer
- It exploits several protocols
 - OPC DA, IEC 101 y 104 e IEC 61850
 - To gather information but also to send commands
- Spear phishing once again → More training/awareness
- Vulnerabilities of protocols and devices
- First reusable malware platform → Qualitative leap

Security measures in control systems

DEFENSE IN DEPTH

- Several layers of security measures to improve protection:
 - Data security
 - Host security
 - Patching management
 - Intrusion prevention
 - Anti virus protection
 - Host firewall
 - Server hardening
 - Internal network security
 - Perimeter security
 - Physical security
 - Policies and procedures

APPROACH

- How to decide systematically the measures we apply:
 - Standards IEC 62443
 - Security models- NIST Cybersecurity Framework

Function Unique Identifier	Function	Category Unique Identifier	Category
ID	Identify	ID.AM	Asset Management
		ID.BE	Business Environment
		ID.GV	Governance
		ID.RA	Risk Assessment
		ID.RM	Risk Management Strategy
		ID.SC	Supply Chain Risk Management
PR	Protect	PR.AC	Access Control
		PR.AT	Awareness and Training
		PR.DS	Data Security
		PR.IP	Information Protection Processes and Procedures
		PR.MA	Maintenance
		PR.PT	Protective Technology
DE	Detect	DE.AE	Anomalies and Events
		DE.CM	Security Continuous Monitoring
		DE.DP	Detection Processes
RS	Respond	RS.RP	Response Planning
		RS.CO	Communications
		RS.AN	Analysis
		RS.MI	Mitigation
		RS.IM	Improvements
RC	Recover	RC.RP	Recovery Planning
		RC.IM	Improvements
		RC.CO	Communications

POLICIES AND PROCEDURES

- Apart from corporative security policies, specific policies for control systems should be added
 - Change management: they should be managed as a small project
 - Cybersecurity assessment in acceptance tests
 - Human resources and acceptable use of resources
 - Supply chain management
 - Security of acquisition, development and maintenance
 - Standard compliance and contractual demands
 - Incident response:
 - Regulation compliance
 - Recovery plans and continuation of activity
 - Define degraded operation modes

CREDENTIALS AND PRIVILEGES

- Privileges
 - Least privilege principle
 - "Deny all" policy
 - Unambiguous identification principle
 - Role-based privilege management
- Good practices of authentication and authorization
 - Multi-factor authentication, biometric authentication, challenge/response, tokens, etc.
- Good management of accounts and passwords
- Monitor user activity

SECURITY OF DEVICES

- Physical security
 - Cover, ports
 - Prevent boot from removable devices
- Service separation when necessary
 - Virtualization, sandboxing
 - Especially if a vulnerable service must be exposed
- Hardening
 - Block unnecessary ports and services
 - Secure boot, partitioning
 - Enable authentication, privileges, change default users/passwords
 - Host-based firewall

SECURITY OF DEVICES: SPECIFIC CASES

Engineering/monitoring workstations

- They should be dedicated computers, in controlled rooms, without access to the Internet
- Hardened as determined by the manufacturer
- We should keep: confidentiality and integrity of configuration and communications; authenticity and integrity of software, logs and authentication methods; availability of event logging

Control devices

- Control the access to physical interfaces and trusted firmware
- Authentication in the management interface
- Ensure integrity and confidentiality of configuration and strategy
- Ensure integrity of commands, logs and alarms

UPDATES AND PATCHES

Patch management:

- It is unacceptable to patch a system in operation
- It would be desirable to patch a system replica, but it is usually too expensive
- Patch during planned system stops
 - A few ones per year and staff is busy

Secure sources

- Verify integrity and authenticity
- Intermediate update server in DMZ
- End of support management

TOOLS

Antivirus

- High computational load → they might not be supported
- Too disruptive → loss of availability
- Blocks only known threats and needs frequent update (that might be impossible)

White lists

- Only accepts changes that were verified for the system for files and applications
- Useful because control systems are highly static → Doesn't need so frequent updates

Scanning tools (for enumeration/discovery & vulnerability scans)

- Useful to know the latest vulnerabilities but not usable in operation
- Active tools might have a disruptive behavior that might harm availability

PERIMETER SECURITY

- Remote access is a necessary evil
- Minimize attack vectors: only one way in
 - Use VPNs (Virtual Private Networks)
 - Users should only have access to the specific systems and applications they need
 - Prevent direct access to critical systems
 - Avoid storing credentials in the remote computer
 - Log everything
- Firewall to filter allowed traffic and Intrusion prevention system (IPS) for malware detection

NETWORK SECURITY: SEGMENTATION

Segmentation

- At the data link or network layer
- Separating in small networks that are easier to handle makes it easier to decide and configure the additional security controls

"Zones and conduits" model

- The idea is to group similar/related devices and the communications among them
- Functional groups based on: network connectivity, processes or control loops, level of the pyramid, users and roles, criticality, etc.
- For each one, a required security level might be set → And so, systematically decided which countermeasures are needed

INTRUSION DETECTION SYSTEMS

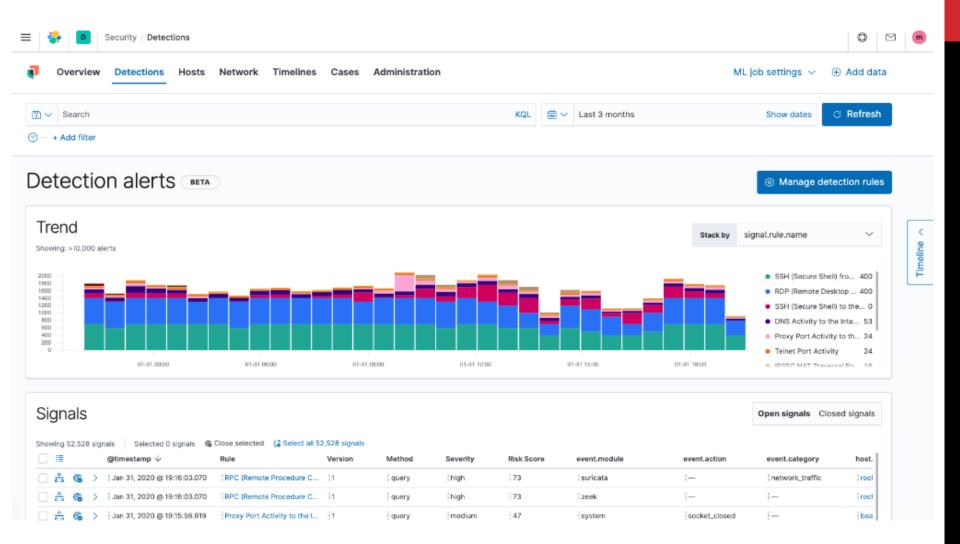
- Based on signatures or based on anomaly detection
- Useful in control systems because they don't block traffic
- Nevertheless, the analysis should rather be done transparently, without an effect of the network latency
- For that reason, we will use:
 - Tap
 - Port mirroring

SEGMENTATION TECHNOLOGIES

- VLANs
- Firewalls / Intrusion prevention systems (IPSs)
 - IPS is problematic in control zones, as it might damage availability
 - Preferable between industrial and business networks or in semi-trusted DMZs
 - Guarantee that undefined or malware and exploit-related traffic does not cross zone limits
- Firewalls / IPSs with application-level filtering
 - Less frequently available than expected

EVENT LOGGING

- Logs of OS, applications, devices,...
 - In industrial devices it might be severely limited
- Details and statistics of traffic: links, protocols, ...
- Alarms generated by firewalls, routers, anti-malware tools, IDSs and IPSs, etc.
- User activity
- Configuration changes
- Additional context information
 - About the industrial process, generally obtained from historians


SECURITY MONITORING

- Monitoring of security events is key
 - For incident response, forensic analysis, auditing and documentation
 - Available information exceed the storage and analysis capacity
- We need to decide what and where to monitor
- Security information and event management (SIEM) systems or event correlators
 - To enable detection, filtering and deep analysis of events
 - Queries, alerts and reports
 - Visual analysis

SECURITY MONITORING

