RECINNA

Introduction to Quantum Computing

Prof. dr. Egon Pavlica University of Nova Gorica

Supported by

www.reginna4-0.eu

Outline

- Michelson-Morley experiment
- Two-slits experiement
- Classical computer
- Introduction to qubit
- Two beam—splitters' experiment
- Mathematical description of two beam-splitters' experiment
- Tutorial on quantum computer (Qiskit)

between April and July 1887

between April and July 1887

Two-slits experiment setup

Two-slits experiment computer simulation

computer

simulation

Two-slits experiment

Two-slits experiment with low light intensity

number of photons

computer simulation

REGINNA 4.0

We don't know where a single photon will travel!!!

Mathematics

- We don't know where a single photon will travel -> we know the probability
- We know where bunch of photons will travel – interference pattern

Photons

- Single photon knows where to go
- Photons interfere with each-other
- Photon obeys quantum mechanics

A Simple quantum computer

Basic blocks of quantum computer

Classical computers

225 10 10-13F68-14 11 1 11 11 1 4 1 1 æ 110 WHACHL C.P. 3 . 1 **U**1 10.00 10.0 133 45 0 B 4 35.0 114 10 4514 - R 45×1 KK B 10.00 100 4. United States 1.25 252 F 115 E 1621 1 230 0719 19 1.000 1.0 110.00 **新設具設調**費 2011/12/201 10 51 1221 16 19 811 12 38.44 AND RALE OF 30 8 111 1 1 2 4 3 BUT TUE おおおは 田学 おおうじ モン・スト・スリル・ビス DI PEC SIL P 121 12 1 12 時間 日本語 日本語 5 B B 1 1 1 1 ADDAM BACET P 10 113 3 STREAM STREAM AND A REPAIRING A STREAM AND A S 147 BCB 1775 H AWAY NO AN A TRIANE A SECTOR BILLES H 31.9 -PARTIES MY 6 (CODDA) 9 HARD N TOL 193 ETERA DOMESTIC DE 2 00023920 NAME BAL OF ER A PRACE 100 30 H 101 4 ET 11 MON. 1 1 15 2 122 1 39 A 128 H 7 BRAN 42 2 842 1 1 THE THE CAPPE

38.9 233

2

Classical computation is about 0 and 1

J

Classical computer – a box of switches

- Switch in computer is realized by a transistor
- A modern CPU has billions of transistors: e.g. Apple M2 Max - 67 billion transistors

Transistor – electronic switch

• Semiconducting material enabled minituarzation of electric switches

J. Bardeen, W. Brattain 1947

Moore's Law: The number of transistors on microchips doubles every two years Our World in Data

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important for other aspects of technological progress in computing – such as processing speed or the price of computers.

Data source: Wikipedia (wikipedia.org/wiki/Transistor count) OurWorldinData.org - Research and data to make progress against the world's largest problems.

Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

Page 26

Minituarization reduced insulator thickness to 2 -5 nm in 2024.

Still number of electrons is large

as a result the quantum phenomena averages out

ノ

Quantum state

- Single photon can hold the information
- Single photon hold more than just "0" or "1"

Classical state

- Semiconductor can be conducting or non-conducting
- semiconductor can hold the information of "0" or "1".

Introduction of quantum bit - qubit

Classical bit is "0" or "1"

$$BIT = |0\rangle$$
 or $BIT = |1\rangle$

Quantum bit – superposition of both states – "0" and "1"

 $QuBIT = \alpha \cdot |0\rangle + \beta \cdot |1\rangle$

Bloch sphere representation of qubit

$$|\Psi\rangle = \alpha \cdot |0\rangle + \beta \cdot |1\rangle$$

$$\alpha = \cos\frac{\theta}{2} \quad \beta = e^{i\varphi}\sin\frac{\theta}{2}$$

Page 30

Probability

to be in "0" and "1" must be 1

$$QuBIT = \alpha \cdot |0\rangle + \beta \cdot |1\rangle$$

$$P(QuBIT) = \alpha^2 + \beta^2 = 1$$

Classical vs Quantum bit

WIKIPEDIA The Free Encyclopedia	Physical support	Name	Information support	$ 0\rangle$	1 angle
	Photon	Polarization encoding	Polarization of light	Horizontal	Vertical
		Number of photons	Fock state	Vacuum	Single photon state
		Time-bin encoding	Time of arrival	Early	Late
	Coherent state of light	Squeezed light	Quadrature	Amplitude-squeezed state	Phase-squeezed state
uBIT systems	Electrons	Electronic spin	Spin	Up	Down
		Electron number	Charge	No electron	One electron
	Nucleus	Nuclear spin addressed through NMR	Spin	Up	Down
	Optical lattices	Atomic spin	Spin	Up	Down
	Josephson junction	Superconducting charge qubit	Charge	Uncharged superconducting island (<i>Q</i> =0)	Charged superconducting island (<i>Q</i> =2 <i>e</i> , one extra Cooper pair)
		Superconducting flux qubit	Current	Clockwise current	Counterclockwise current
Ø		Superconducting phase qubit	Energy	Ground state	First excited state
Page 32	Singly charged quantum dot pair	Electron localization	Charge	Electron on left dot	Electron on right dot
	Quantum dot	Dot spin	Spin	Down	Up
	Gapped topological system	Non-abelian anyons	Braiding of Excitations	Depends on specific topological system	Depends on specific topological system
	Vibrational qubit ^[15]	Vibrational states	Phonon/vibron	01 angle superposition	10 angle superposition
	van der Waals heterostructure ^[16]	Electron localization	Charge	Electron on bottom sheet	Electron on top sheet

** Ω W き Ω W 科 維 川

Detector

Experiment shows that photons travel only to path |1
angle

Mathematical description $\binom{1}{0}$ 1Red Laser

Qubit at the exit of the laser: $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

After BS:
$$\alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

Beam-splitter operation: $A = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix}$

After first beam-splitter: $\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}$

After second beam-splitter:

 $\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix} = i \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Page 38

https://quantum-computing.ibm.com

1. Create an account:

https://quantum-computing.ibm.com

2. Launch IBM Quantum Composer

1. Create an account:

https://quantum-computing.ibm.com

2. Launch IBM Quantum Composer

3. Modify to have one, two or three qubits -> study the changes

1. Create an account:

https://quantum-computing.ibm.com

2. Launch IBM Quantum Composer

3. Modify to have one, two or three qubits -> study the changes

4. Leave only one qubit, and study **H** and **S** operations

Hadamard operation:
$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Phase change:
$$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$$

Setup Beam-splitter gate

1st Beam-splitter:
$$A \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \cdot \begin{bmatrix} 1 & i \\ 1 & -i \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & i \\ i \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & i \\ i \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ i \end{bmatrix}$$

1st+2nd Beam-splitter: $A \cdot A \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ i \end{bmatrix}$
 $(S \cdot H \cdot S) \cdot (S \cdot H \cdot S) \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ i \end{bmatrix}$

1st Beam spliter

 $S \cdot H \cdot S \begin{bmatrix} 1 \\ 0 \end{bmatrix} =$

•	• • • • •	aquantum-computing.ibm.com	5	⊕ î + G
		😂 Untitled circuit - IBM Quantum		
	IBM Quantum Composer			Q (?) A
	Untitled circuit Saved File E	lit View	Visualizations seed 4894	Setup and run 尊
3	Operations 쉬[]	\hookrightarrow \subset Left alignment \checkmark Inspect	Qiskit ~	Read only
	Search \square	q[0] - S H S S H S	Open in Quantum Lab 1 from qiskit im QuantumRegiste ClassicalRegis QuantumCircuit 2 from numpy imp 3 4 qreg_q = Quant 'q') 5 creg_c = Class (1, 'c') 6 circuit = Quan (qreg_q, creg_)	port r, ter, ort pi umRegister(1, icalRegister tumCircuit c)
	Statevector \checkmark (1) 1.0 0.8 0.6 0.4 0.2 0.0 0.4 0.2 0.0 0 1 Computational basis states 7/2 Output state	∴ Q-sphere ∨ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	i : 7 8 circuit.s(qreg 9 circuit.h(qreg 10 circuit.s(qreg 11 circuit.s(qreg 12 circuit.h(qreg 13 circuit.s(qreg	_q[0]) _q[0]) _q[0]) _q[0]) _q[0])

ISKI

2nd Beam spliter

 $(S \cdot H \cdot S) \cdot (S \cdot H \cdot S) \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ i \end{bmatrix}$

Compute resource ibmq_quito		
Status timeline	Queued	^
 Created: Jul 06, 2023 9 In queue Running quantum computation 5 Completed 	9:20 PM time was 0ms	
Details		^
Sent from t double beam-splitter		
Created on Jul 06, 2023 9:20 PM		
Instance ibm-q/open/main		
Program circuit-runner		
# of shots 4096		
# of circuits 1		
	Compute resource ibmq_quito Status timeline Created: Jul 06, 2023 9 Created: Jul 06, 2023 9 In queue Running quantum computation f Completed Details Sent from Sent from Created on Jul 06, 2023 9:20 PM Instance ibm-q/open/main Program circuit-runner # of shots 4096 # of circuits 1	Compute resource ibmq_quito Status timeline Queued Created: Jul 06, 2023 9:20 PM In queue Running quantum computation time was 0ms Completed Details Sent from Sent from Sent from Sent from Sent from Jul 06, 2023 9:20 PM Instance ibm-q/open/main Program circuit-runner # of shots 4096 # of circuits 1

Add a measure and run the quantum program!

RECINNA 4.0

et up and run your circuit		×
ep 1 100se a system or simulator	Step 2 Choose your settings	
Q Search by system or simula	Instance ibm-q/open/main	~
ibmq_quito See details	Shots *	
System status • Online Total pending jobs 39	4096	÷
5 Qubits 16 QV 2.5K CLOPS	Job limit: 5 remaining	
O ibmq_belem See details	Tags (optional)	
System status • Online Total pending jobs 37	Add tags	
5 Qubits 16 QV 2.5K CLOPS		
O ibmq_lima See details		
System status • Online Total pending jobs 43		
5 Oubite 8 OV 2 7K CLOPS		

on ibmq_quite

Page 47

Check the number of |0> and |1>

Note: *Real quantum computers have also errors!*

Created: Jul 06, 2023 9:59 PM
 In queue: 29m 44s

 \bigtriangledown

Running: Jul 06, 2023 10:29 PM quantum computation time was 1s

Completed: Jul 06, 2023 10:29 PM

RECINNA

Want more? Take the red pill ;)

Egon Pavlica (mailto: egon. pavlica@ung.si)

www.reginna4-0.eu